Serpentine

Faculty: 
Dr. Gregory Abowd
Students: 
fereshteh shahmiri, Anandghan Waghmare, Dingtian Zhang, Shivan Mittal

We introduce Serpentine, a self-powered sensor that is a reversibly deformable cord capable of sensing a variety of natural human input. The material properties and structural design of Serpentine allow it to be flexible, twistable, stretchable and squeezable, enabling a broad variety of expressive input modalities. The sensor operates using the principle of Triboelectric Nanogenerators (TENG), which allows it to sense mechanical deformation without an external power source. The affordances of the cord suggest six natural interactions-Pluck, Twirl, Stretch, Pinch, Wiggle and Twist. Serpentine demonstrates the novel ability to simultaneously recognize these inputs through a single physical interface. A 12-participant user study illustrates 95.7% accuracy for a user-dependent recognition model using a realtime system and 92.17% for user-independent offline detection. We conclude by demonstrating how Serpentine can be employed in everyday ubiquitous applications.

Lab: 

We are interested in ubiquitous computing and the research issues involved in building and evaluating ubicomp applications and services that impact our lives. Much of our work is situated in settings of everyday activity, such as the classroom, the office and the home. Our research focuses on several topics including, automated capture and access to live experiences, context-aware computing, applications and services in the home, natural interaction, software architecture, technology policy, security and privacy issues, and technology for individuals with special needs.