
Using Tracing and Sketching to Solve Programming Problems
Replicating and Extending an Analysis of What Students Draw

Kathryn Cunningham
School of Interactive Computing
Georgia Institute of Technology

85 5th St NW
Atlanta, Georgia 30332

kcunningham@gatech.edu

Sarah Blanchard
School of Psychology

Georgia Institute of Technology
654 Cherry Street

Atlanta, Georgia 30332
sblanchard6@gatech.edu

Barbara Ericson, Mark Guzdial
School of Interactive Computing
Georgia Institute of Technology

85 5th St NW
Atlanta, Georgia 30332

{ericson,guzdial}@cc.gatech.edu

ABSTRACT
Sketching out a code trace is a cognitive assistance for programmers,
student and professional. Previous research (Lister et al. 2004)
showed that students who sketch a trace on paper had greater
success on code ‘reading’ problems involving loops, arrays, and
conditionals. We replicated this �nding, and developed further
categories of student sketching strategies. Our results support
previous �ndings that students who don’t sketch on code reading
problems have a lower success rate than students who do sketch.
We found that students who sketch incomplete traces also have
a low success rate, similar to students who don’t sketch at all.
We categorized sketching strategies on new problem types (code
writing, code ordering, and code �xing) and �nd that di�erent types
of sketching are used on these problems, not always with increased
success. We ground our results in a theory of sketching as a method
for distributing cognition and as a demonstration of the process of
the notional machine.

CCS CONCEPTS
•Social andprofessional topics→Computing education; CS1;

KEYWORDS
CS1, novice programmers, tracing, sketching, notional machine,
distributed cognition

1 INTRODUCTION
Introductory computing courses aim to teach students computing
fundamentals through instruction on basic programming skills,
syntax, and semantics [1]. Studies suggest these courses o�en fail
to teach students how to successfully write code to solve basic
problems [17, 27]. Many students reach the end of CS1 without
being able to read and understand short pieces of code [14, 24].

Why do students struggle? Research suggests that the intrinsic
cognitive load [23] of solving typical introductory programming
problems may be higher than that of introductory problems in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICER ’17, August 18–20, 2017, Tacoma, WA, USA
© 2017 ACM. 978-1-4503-4968-0/17/08. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3105726.3106190

other �elds [18]. Also, students exhibit a wide range of misunder-
standings about a crucial concept: the notional machine [22]. �e
notional machine is a theoretical construct representing the process
through which a computer executes code of a particular language or
paradigm [22]. An accurate understanding of the notional machine
is central to a student’s ability to trace and write code, since they
must run code through their mental model of the notional machine
in order to predict the outcome of that code’s execution.

�e understanding of the notional machine and the management
of cognitive load are hidden mental processes. However, when stu-
dents sketch out a problem-solving technique such as a code trace
on paper, we can observe some signs of their cognition. Prior work
in computing education research has used student drawings to iden-
tify misconceptions about variable assignment [15]. In educational
psychology student sketches are also used to gauge understanding
of concepts [3].

In this paper, we use the term sketching to describe a program-
mer’s wri�en visualizations of program state or any other comput-
ing process. Sketching may be most frequently associated with code
reading, when students are likely to write down a trace of variable
states. However, we purposefully keep the de�nition of sketching
broad to cover many situations in which a student or professional
programmer may take pencil to paper. Such tasks may include
planning an algorithm, designing an object-oriented hierarchy, or
annotating existing code.

Sketching may help students manage cognitive load while also
demonstrating the student’s understanding of the notional machine
to themselves, peers, and instructors. Sketching requires that the
student take an active role as they describe a computational process
with their pen. Sketching the process of code execution, as during
a trace, forces a student to ask themselves “what happens next?” as
they draw each step of the notional machine.

�is study investigates the following questions about sketching
by CS1 students:

• Are some sketching techniques more associated with correct
problem-solving than others?

• Does sketching di�er for di�erent problem types, like reading,
writing, �xing, and ordering code?

• What may in�uence students’ sketching choices?

2 BACKGROUND
2.1 Sketching in computing education research
�e Leeds Working Group (LWG) at ITiCSE 2004 produced an in�u-
ential multi-institutional, multi-national study analyzing the code

Session 7: External Representation for Understanding & Learning Trajectory ICER’17, August 18–20, 2017, Tacoma, WA, USA

164

reading skills of hundreds of students [14]. While outcomes were
not as stark as those of the McCracken Working Group analysis
at ITiCSE 2001 which evaluated code writing skills [17], the LWG
found that CS1 students were challenged by many code reading
problems involving loops, conditionals, and arrays. �eir assess-
ment involved two question types: code prediction problems where
students determined the values of variables a�er code execution,
and code completion problems where students chose pieces of code
needed to complete a code snippet with certain functionality.

For a subset of participants, LWG researchers characterized and
analyzed all notes and marks drawn on the test sheets. Certain
sketches seemed more helpful than others. Tracing sketches that
tracked multiple values of the same variable were most correlated
with correct responses. When students le� their paper blank, their
success rate was lower than when any sketching type was employed.
�ese �ndings suggest that sketching may support students’ ability
to solve code prediction and code completion problems.

Some members of the LWG took this analysis further [16]. Sketch-
ing amounts varied widely from institution to institution, from as
as low as 28% of problems sketched to as high as 92%. Students
consistently sketched more o�en on code prediction problems than
on code completion problems.

Whalley et al. [29] analyzed student sketching on questions
from the LWG analysis and on additional code reading question
types. Like the LWG, they found that sketching is associated with
more successful problem-solving. Di�erent sketch types were more
common on di�erent problem types. �e authors also noted that a
minority of participants used the tracing sketch type demonstrated
in their classroom. Lister et al. (2010) [13] also replicated the LWG’s
results about the success of tracing sketches and expressed a need
for more �ne-grained categories of sketched traces.

Researchers have reported that CS1 students’ ability to sketch
variable states correlates with their scores on other assessments.
Such diagrams include “memory diagrams” [9], where di�ering
shapes distinguish objects (circles), primitives and references (squares),
and classes (diamonds). Similar results were observed with “object
diagrams” [25], although �omas et al. found that students were not
more likely to use diagrams a�er they were introduced in class, and
that using a diagram did not correlate with increased success for
students with prior programming experience. Hertz and Jump used
“trace-based-teaching” [8], a curricular method involving intricate
sketched program traces, including details about variables’ location
in the stack or in the heap and variables’ enclosing method call.
Each class started with 20-30 minutes of tracing activities using
these diagrams. �ey found that CS2 grades increased and dropout
rates decreased a�er introduction of this technique.

2.2 Tracing and the notional machine
�e idea of the notional machine was �rst proposed in 1986 [5], yet
recent work [22] has made the notional machine a key framework
for viewing how students understand computing. �e notional
machine is an abstraction of how the computer processes code,
based in a particular language or paradigm. When a student writes
code with an expected outcome or predicts the result of running
a piece of code, the student runs that code through their mental
model of the notional machine [22]. �e understanding of the

notional machine forms a hidden but crucial intermediate step in
programming work.

When teachers understand the notional machine, it becomes
clear what mental processes a student must learn. E�ective class-
room techniques assist students in de�ning and re�ning their men-
tal models, and successful assessments allow teachers to gauge their
students’ depth of understanding of the notional machine.

Tracing code, which is stepping through the process of the no-
tional machine, makes a student’s mental model of the notional
machine evident [22]. A teacher reviewing a sketch of a student’s
trace might be able to identify misconceptions and focus on im-
proving the student’s understanding. By creating a sketch of a code
trace, students may be able to clarify and re�ne their mental model
of the notional machine.

2.3 Sketching as distributed cognition
Intelligence is commonly considered a characteristic of an individ-
ual, and cognition is commonly considered a process of a single
mind. However, from the perspective of distributed cognition, cog-
nitive processes occur in a socio-technical system composed of
humans, artifacts, and their interactions [10]. �e sketch and the
sketcher can be viewed as part of a distributed system that is per-
forming cognition about programming. Together, the markings on
the paper, the process of modifying the marks, and the cognition
of the sketcher work to generate an answer.

Cognition can be o�-loaded from a single mind with memory
aides like diagrams and text, technological tools like measurement
devices and data displays, and other individuals like teachers and
peers [20]. Many introductory-level �elds make e�ective use of
drawing and sketching to help students work “smarter”. Examples
include structured long division calculations in elementary mathe-
matics [12], the pushing electron formalism in organic chemistry
[6], and force body diagrams in introductory physics [4].

A key insight from work in distributed cognition is that the
design of visual aids can modify the amount and type of cognition
a human must perform when interacting with the aid [10]. With
the limited working memory that a student must use to run their
mental model of the notional machine [26], e�ective o�-loading
is crucial. Some sketching methods may successfully o�oad more
cognition from the human to the paper. Another sense of a sketch’s
e�ectiveness is greater correctness. Sketches may not always be
highly successful at both. Single value tracing is a phenomenon
noted by Vainio and Sajaniemi [28], where students only keep
track of one “memory slot” that holds the most recently modi�ed
value. �is trace has low cognitive load, but with its inaccurate
representation of the notional machine, it produces incorrect results
for all but the simplest problems.

3 EXPERIMENTAL DESIGN
CS1 students from a large research university in North America
participated in a computer-mediated experiment, using their own
laptops in a supervised se�ing. �e experiment took place during
the 10th week of a 16 week semester. �e analysis presented here
is from the pre-test portion of this experiment.

�e test consisted of eight questions wri�en in Python. It tested
CS1 knowledge on lists, loops, and conditionals. As shown in Table

Session 7: External Representation for Understanding & Learning Trajectory ICER’17, August 18–20, 2017, Tacoma, WA, USA

165

Table 1: �estion types and grading strategies.

Type Graded by
1 Reading - Prediction Multiple choice
2 Reading - What code does Multiple choice
3 Reading - Prediction Multiple choice
4 Reading - Prediction Multiple choice
5 Reading - Prediction Multiple choice
6 Fixing Rubric (12 point scale)
7 Ordering - 2D Parsons Rubric (12 point scale)
8 Writing Rubric (12 point scale)

What do a and b equal a�er the following code executes?

a = 10
b = 3
t = 0
for i in range (1,4):

t = a
a = i + b
b = t - i

Figure 1: Wording of Problem 4

1, the test consisted of �ve multiple choice questions about code
reading, one question about �xing code to meet a speci�cation,
one question involving ordering code in a two-dimensional Par-
sons problem with paired distractors [11, 19], and one question
involving writing code to meet a speci�cation. �e code reading
questions were of two types: four involved predicting the result
of executing a code snippet (see Figure 1 for an example), while
one involved determining what code does. �e problems involving
�xing, ordering, and writing code all contained sample input and
output in the problem descriptions. �e �x code and write code
problems provided feedback to test-takers in the form of unit tests.
Students were allowed a maximum of 45 minutes to complete the
eight-question test: 15 minutes for the reading questions, 10 min-
utes for the �xing question, 10 minutes for the ordering question,
and 10 minutes for the writing question.

During the test, participants were instructed to use provided pens
and blank scratch paper (labeled with their unique identi�cation
number) if they wished to draw. Participants were instructed to
return their scratch paper to the experiment administrators a�er
completion of the test.

In this study, we examine scratch sheet and performance data.
159 participants a�ended the experiment. 24 participants were
eliminated from the data set because they did not answer at least
one of the questions or spent less than 30 seconds on trying to
answer one of the �x code, order code, or write code problems.

4 REPLICATION OF THE LEEDS WORKING
GROUP ANALYSIS

Our data provides the opportunity to replicate the Leeds Working
Group (LWG) analysis on the use of sketching by CS1 students
on code reading problems about loops, lists, and conditionals. We

present a replication of the key �gure about sketching from the
LWG study in Table 2. For this analysis, we used a random subset
of the data: scratch sheets with even-numbered IDs (N=65).

4.0.1 Di�erences between studies. Minor procedural di�erences
between the LWG study and the current study should be noted.
In our computer-mediated experiment, students read questions on
their laptop screen, sketched on a blank sheet of paper, and selected
an answer by clicking a bu�on on the screen. In the LWG study,
participants sketched on paper that contained printed test questions,
and chose their answer by circling a printed answer choice. While
the LWG’s questions were wri�en in Java, this study used questions
wri�en in Python. Our participants were CS1 students a li�le more
than halfway through their course, while Leeds Working Group
students had recently completed or were near completion of CS1.

4.0.2 Sketch types. �e LWG identi�ed twelve types of sketch-
ing in their analysis. �e following eight sketch types are used in
this replication:

• Blank Page (B): Nothing wri�en at all.
• Computation (C): An expression containing an operation

such as addition or division. �e operands may be two
literal values or a value and a variable.

• Keeping Tally (K): Tally marks keeping track of the number
of occurrences of something.

• Number (N): A standalone value, or a variable and an asso-
ciated single value.

• Position (P): Indices are wri�en on top of an array, assisting
with lookup by index.
• Trace (T): Multiple values of one or more variables are

tracked by listing values near variable names. Previous
values may be crossed out.

• Synchronized Trace (S): Values of multiple variables are
tracked, with the value of all variables re-wri�en any time
any variables changes.

• Odd Trace (O): Multiple values of one or more variables are
tracked, but in a way that is not T or S.

�e computer-mediated nature of our experiment meant that
some of the LWG sketch categorizations are not applicable because
they require writing on or near pre-existing problem text. �e
categories Alternate Answer (A): a di�erent answer choice circled,
Underlined (U): part of the original problem text underlined, and
Ruled Out (X): one or more of the answer choices crossed out were
not considered in this analysis. We also removed the Extraneous
Marks (E) category, and instead did not record sketching that did
not clearly fall into one of the other categories

We noticed some additional sketch types in our data that we
created new categories for:

• Describe (D): English words describing expected function-
ality of code.

• Loop Variables (L): A listing of the loop variables returned
by the range function1 are wri�en out. �is provides a
reminder of the value for each loop iteration.

• Rewrite (R): Portions of code from the question are rewrit-
ten. �estion information is then more easily accessible
for tracing or other sketching.

1Used in Python for loops to generate index variable values

Session 7: External Representation for Understanding & Learning Trajectory ICER’17, August 18–20, 2017, Tacoma, WA, USA

166

Table 2: Percentage of correct answers on code reading prob-
lemswhen students (N=65) use a particular LWGsketch type

Current Study LWG Study
Sketch Category % Correct n % Correct n
Trace (T) 82.1 95 75 215
Computation (C) 78.7 61 60 30
Loop Variables (L) 77.3 44 - -
Position (P) 66.7 9 64 75
Number (N) 65.3 118 70 189
Rewrite (R) 60.7 56 - -
Blank (B) 60.7 135 50 256
Odd Trace (O) 55.6 9 78 23
Synchronized Trace (S) - 0 77 73
Keep Tally (K) - 0 100 6
Alternate answer (A) - - 69 26
X-ruled Out (X) - - 60 60
Underlined (U) - - 52 44

4.0.3 Coding the data. We created a coding system for each
of the eleven categories and the �rst two authors coded the data.
Inter-rater reliability on these sketching categories an 81% match
across 20% of the data.

In the LWG study, sketching was performed on or near question
text, making determination of which sketch belonged to which ques-
tion straightforward. In our data, all problems were sketched on a
single scratch sheet, requiring additional analysis to pair sketches
with questions.

Noting the distinct variable names used in the di�erent prob-
lems, we developed a coding scheme to determine which sketches
belonged to which problems. �e �rst two authors implemented
this coding scheme to match sketches with questions, while leaving
out sketches whose originating question was unclear. Inter-rater
reliability on how each line of sketching was categorized was 95%
across 20% of the data.

4.1 Not all sketching is created equal
We replicate the �rst major result of the LWG: di�erent sketching
types are associated with di�erent rates of success. Students’ av-
erage score across all code reading problems was 66.8%. However,
the use of certain sketches like Trace and Computation was associ-
ated with higher than average success, while the use of Rewrite or
Odd Trace was associated with lower than average success. Some
methods of o�oading cognition appear to be more helpful than
others.

4.2 �e sketch type “Trace” is the most
successful

�e LWG study identi�ed three di�erent types of tracing sketches,
and found that they were the most highly associated with success
out of all sketch types. In our data, one of those trace categories
was the most successful category of all sketching categories (82.1%
success rate), while the other two tracing categories were rarely

used. �ese results support the idea that tracing is a strong strategy
for solving code reading problems.

4.3 No sketching at all is associated with lower
success

While students who le� problems blank did not score as poorly in
our data as in the LWG study (61% vs 50%), they still scored poorly
compared to other sketch categories. In the LWG study, leaving
a problem blank was associated with the lowest average score of
any sketch type, closely followed by Underlined. In our analysis it
has the second lowest average score overall, tied with Rewrite. It
should be noted that the category with the lowest score, Odd trace,
has few data points. Choosing not to sketch is not a successful
strategy for solving code reading problems.

4.4 Di�erences from LWG results
4.4.1 Odd Traces are not successful. In the LWG, the Odd Trace

category was one of the sketch categories with the highest rate
of success (78%). However, in our analysis, the technique had the
lowest success rate (56%). In both studies, Odd Traces were rare,
occurring in only 3% of all problems. Synchronized Traces were
not found at all in our data.

It is possible that we interpreted the Odd Trace and Synchro-
nized Trace categories di�erently than the LWG. It is also possible
that our participants simply did not use those trace types, perhaps
because they had never seen them. All our students a�ended a
single institution, while participants in the LWG study a�ended
a variety of institutions, and potentially saw a wider variety of
sketching techniques.

In our data, Odd Traces tended to be less structured than Traces.
It also was more di�cult to determine which values were associated
with which variable. Perhaps this lack of clarity was associated
with more di�culty in tracking variable values.

4.4.2 Di�erences in non-tracing sketch types. While the most
successful and least successful sketching techniques were consistent
between our results and those of the LWG, other sketch types
were observed at di�erent rates and were associated with varying
success.

�is di�erence may be explained by di�erences in the problem
types. In our data we did not observe certain sketch types, including
Keep Tally. Keep Tally was rare in the LWG analysis; it may have
been even less common in this data set because a counter variable
only appeared in one problem in our test, while the LWG questions
contained four problems with counters.

�e di�erence could also be due to the di�erence in test-taking
format. For example, the Position type was much more rare in our
data than in that of the LWG. It is possible that creating this sketch
required extra e�ort to copy down an array, rather than writing
near a pre-printed array. �e additional burden of this task may
have made it less appealing. Alternatively, the questions in our
experiment may have requires less complex pa�erns of indexing
into arrays than those of the LWG, making it less likely that students
sketch to assist with this task.

Session 7: External Representation for Understanding & Learning Trajectory ICER’17, August 18–20, 2017, Tacoma, WA, USA

167

Table 3: Probability of getting problems right, with andwith-
out sketching.

�estion % Correct % Who Sketched
1 - Predict 63.0 70.4
2 - What code does 78.5 20.0
3 - Predict 66.7 43.7
4 - Predict 75.6 94.8
5 - Predict 53.3 63.0
Fix 65.6 12.6
Order 96.5 3.0
Write 67.6 22.2

Figure 2: Di�erences in correctness between sketchers and
non-sketchers (* = p <0.10, ** = p <0.05, *** = p <0.01 on
Welch two Sample t-test)

4.5 Sketching to avoid split attention e�ect
Di�erences in sketches between this study and the LWG study shed
light on di�erences in student cognition between a paper-based
exam and a computer-based exam. Students frequently re-wrote
pieces of code from questions on their scratch sheets, perhaps
to manage issues related to the split a�ention e�ect [2]. While
students in the LWG study could annotate printed code, in our
study student sketches were separated from original problem text
on the computer screen. In order to decrease this extrinsic cognitive
load, students copied text to be closer to their other sketching.

Rewriting was not a highly successful sketching technique, how-
ever, with a success rate about the same as not sketching at all. It
is possible that struggling students tried to use Rewrite to relieve
some extrinsic cognitive load, but it was not a major assistance.

5 PROFILING SKETCH USE
We extend the LWG analysis to examine use of sketching more
deeply, including on additional problem types: �xing code, ordering
code, and writing code.

Table 4: Average score on code �xing, ordering, and writing
problems when students (N=65) use a particular sketch type
from the Leeds Working Group categorization.

Sketch Category Average score (%) Data Points
Write (W) 92.7 7
Describe (D) 81.4 14
Blank (B) 77.7 165
Number (N) 71.5 11
Rewrite (R) 65.0 6
Position (P) 40.0 1
Computation (C) 26.7 3

5.1 Some prediction problems trigger
sketching more than others

Students chose to sketch the most for code tracing problems (1,
3, 4, and 5). However, even among code tracing problems, some
problems were much more frequently sketched than others. 95% of
students sketched on question 4, while 44% of students sketched
on question 3 (see Table 3).

�ese di�erences may be explained by the number of variable
states that students had to track in each problem. In question 4,
three di�erent variables were updated three times. In question 3,
one variable was updated three times, and there were three com-
parisons. In that question, if students noticed that all comparisons
would be false due to a code “error”, they did not need to complete
a trace. �is supports the view that tracing is o�oading cognition,
which may be more necessary on some problems than others.

5.2 Sketching leads to better predictions
On code prediction problems, sketchers were more successful, some-
times dramatically so (Figure 2). On question 4, those who sketched
performed nearly 50 percentage points higher than non-sketchers.
For other prediction problems, the di�erence was 15-25 percentage
points. For the problem where students described what a code
snippet does, there was almost no di�erence between sketchers
and non-sketchers.

�e high rate of sketching on problem 4 suggests that students
have some idea when it is a good idea to sketch, at least in cases of
high cognitive load.

5.3 Sketching on �x, order, and write code
problems

5.3.1 Sketching was associated with lower scores on the fix code
problem. Surprisingly, students who sketched on the �x code prob-
lem had a lower average score than those who did not sketch (Figure
2) (46% vs 69%, p-value=0.06 on Welch two sample t-test). Only 12%
of students sketched on this problem, and the most common sketch
type used was Number (a sketch of a single value of a variable). No
students chose to sketch a trace on this problem.

Students might have used sketching techniques like Trace fruit-
fully on the �x code problem, but they chose not to. Maybe they
did not perceive the value of sketching when �xing code. Perhaps

Session 7: External Representation for Understanding & Learning Trajectory ICER’17, August 18–20, 2017, Tacoma, WA, USA

168

students’ usual strategy when �xing code is to look for pa�erns, to
match the code to their existing schema [21].

5.3.2 There was very li�le sketching on the order code problem.
Only 3% of students sketched on this problem. Both sketchers
and non-sketchers were highly successful (average score 97.9%
and 96.5% respectively). No students chose to sketch a trace on
this problem. Students’ low amount of sketching on the order
code problem may be further evidence of the low cognitive load of
Parsons problems.

5.3.3 Di�erent sketch types were used when writing code. 22% of
students sketched on the code reading problem, they scored higher
than their non-sketching peers, but not statistically signi�cantly so
(p = 0.34 on Welch two sample t-test). �e most common sketching
technique used was Describe, where students wrote the expected
functionality of code on their scratch sheet. Second most common
was the Write technique, where students wrote code to solve the
problem on paper. �is occurred even though students could write
their code on the computer. Writers were highly successful, scoring
an average of 92.7% (see Table 4). Writing sketches were only used
on this problem. It is hard to say whether the increased success of
sketchers is related to sketching itself, or an e�ect of time spent
planning before implementing.

5.4 Sketchers take more time
Sketchers took more time than non-sketchers on code �xing (5.5
min vs 12.7 min, p <0.001 on Welch two sample t-test), code order-
ing (5.4 min vs 12.2 min, p <0.01 on Welch two sample t-test), and
code writing problems (7.0 min vs 12.0 min, p <0.001 on Welch two
sample t-test). Students who sketched on more code reading prob-
lems took more time to complete that part of the test. Correlation
between the number of code reading problems sketched and time
spent on the code reading questions has an r2 of 0.64.

�is raises the possibility that sketchers score more highly simply
because they spend more time problem-solving. However, there is
no correlation in our data between time taken and score for any of
the problem types (r2 <0.15 for all).

6 OBSERVING NEW SKETCH TYPES
We replicated the result that a tracing sketch type is highly cor-
related with correctness on code prediction problems. However,
during our data analysis, we noticed that students used several
distinct tracing sketch types not distinguished in the Leeds Work-
ing Group categorizations. �ese sketch types were most o�en
used for problem 4, a code prediction problem involving complex
variable assignment within the loop body (see Figure 1 for question
text). �is section explores why certain tracing types might be
more representative of the notional machine. We compare the suc-
cess of students using various techniques and discuss how di�erent
populations vary in their use of these sketch types.

6.1 Creating �ner distinctions in the LWG
sketching taxonomy

We identi�ed four distinct sketching types, shown in Figures 3-6.
All of the sketches are traces, involving the tracking of changing
variable values over time. All these sketches would be categorized

Figure 3: Examples of the “chunk” technique

Figure 4: Examples of the “line” technique

Figure 5: Examples of the “crossout” technique

Figure 6: Examples of the “arrow �ow” technique

as Trace (T) in the LWG analysis, but we felt their structures were
distinct and that they should be distinguished.

6.1.1 Chunk. �is sketch is identi�ed by groupings of assign-
ments, with variable names, equal signs, and the variable value
re-wri�en for each loop iteration.

6.1.2 Line. �is sketch lists values in a series, following a vari-
able name. �e values may simply be wri�en next to each other, or
may be separated by commas.

6.1.3 Crossout. �is sketch is distinguished by values that are
crossed out, usually with a slash. Each variable is wri�en once,
with a series of values a�er it. �e value at the end of the line is
not crossed out.

6.1.4 Arrow Flow. In this sketch type, variable names are wri�en
once, and values are separated by arrows, drawn in the direction of
newer values.

Session 7: External Representation for Understanding & Learning Trajectory ICER’17, August 18–20, 2017, Tacoma, WA, USA

169

Figure 7: Examples of “incomplete” tracing sketches

6.2 Sketches are di�erent in how they mirror
the notional machine

�e notional machines of major procedural programming languages
share common operations when assignment of primitives is in-
volved. During assignment, a variable’s value is overwri�en by
the new value being assigned. Each variable can hold only one
value at a time. Accurate sketching techniques for tracing are a
demonstration of this action of the notional machine.

Some sketching techniques from our data seem to mirror the
notional machine more clearly than others. Crossout, for instance,
demonstrates that previous values are no longer accessible by a
strike-through. It is hard to mistakenly use a prior value when it
is clearly crossed out. For Line and Arrow Flow, if the sketcher
understands that the value at the end of the line is the current
value, the sketch communicates this same idea. In contrast to these
three techniques, Chunk groups variable values together by the
loop iteration when they are assigned. In order to �nd the most
recent value, the student must consider both the current listing of
values and the previous listing of values.

From this point of view, Crossout places the least cognitive de-
mand on the sketcher as they act out the notional machine, because
information about the most recent value is clearly presented. In
contrast, Chunk requires more cognitive e�ort by the sketcher.

6.3 �ese tracing sketches were equally
successful

We predicted that this cognitive demand would a�ect students’
correctness when using these methods, so that Crossout would
have a higher success rate than Chunk.

We coded tracing sketch types used on question 4 (n=135, inter-
rater reliability on tracing type used was 93% across 20% of the data).
In addition to the four tracing sketch types described in Section
5.1, we also created categories for Incomplete tracing sketches
and Other tracing sketches. Incomplete traces did not have a clear
sketching structure or include the majority of variable values. Other
tracing sketches were traces that were organized and covered all
values, but were not from the four main categories we identi�ed.
Students overwhelmingly used the chunk tracing method (53.3%),
followed by the line tracing method (16.4%).

Di�erence in correctness on question 4 between students who
used the four tracing types was not statistically signi�cant. Students
who used one of these methods performed similarly. Di�erences in
representations of the notional machine did not signi�cantly impact
students’ outcomes in this se�ing. However, if there were increased

Table 5: Percentage of correct answers based on tracing
sketch type.

Sketch Type % Correct Count
Line 92.3 26
Chunk 82.4 77
Crossout 77.8 9
Arrow Flow 50.0 2
Other 50.0 2
None 37.5 8
Incomplete 9.1 11

Figure 8: Tracing technique used by the second instructor

time constraints or if students had less programming experience,
we may be more likely to see di�erences between tracing sketches
based on this variation in cognitive process.

6.4 Incomplete tracers and non-tracers were
less successful

Students who used no tracing method or used an incomplete trac-
ing method performed much more poorly on this question than
students who used a complete tracing method. A statistically signif-
icant di�erence in correctness was found in comparisons between
incomplete sketchers and Chunk, Line, and Crossout (p <0.001
on all on Fisher’s exact test). A statistically signi�cant di�erence
in correctness was found in comparisons between non-sketchers
and those using Chunk and Line (p <0.001 on Fishers Exact Test).
�e di�erence between non-sketchers and those using Crossout
technique was signi�cant at the lower bar of accepting an alpha
value of 0.10 (p=0.06).

6.5 Instructors, TAs, and students trace
di�erently

Instructors may in�uence a student’s choice of technique. Partic-
ipants in this experiment came from two sections of CS1, taught
by two di�erent lecturers following the same schedule. Students
in these courses were each assigned to a weekly recitation, led by
an undergraduate teaching assistant (TA). Both course instructors
and 12 of the 17 TAs (70%) were interviewed to determine if they
demonstrated tracing techniques similar to those described here
(see Table 6).

One instructor self-reported use of Chunk and Line in her class-
room, which were the two most commonly-used sketching tech-
niques seen in our data. However, the second instructor self-
reported use of a technique not observed in any student sketches,

Session 7: External Representation for Understanding & Learning Trajectory ICER’17, August 18–20, 2017, Tacoma, WA, USA

170

Table 6: Tracing sketches used by TAs and students

Sketch Type % of interviewed TAs (n) % of students (n)
Chunk 16.7% (2) 57.0% (77)
Line 33.3% (4) 19.3% (26)
Crossout 41.7% (5) 6.7% (9)
Arrow �ow 8.3% (1) 1.5% (2)
Total 100.0% (12) 84.4% (114)

although 47% of participants were enrolled in this instructor’s sec-
tion. �is technique involved a representation of variables as boxes,
and the crossing out of prior values as variables took on new values
(see Figure 8).

TAs also did not present standardized sketching techniques dur-
ing recitations and o�ce hours. Interviews with 12 of the 17 TAs
showed that they used a wide variety of tracing sketches, although
they favored Crossout and Line techniques (see Table 6).

We cannot determine why students used a certain technique
without more information, but the data suggests interesting ques-
tions. Why did students use the techniques of the �rst instruc-
tor, but never the technique of the second instructor? Although
Crossout was favored among TAs, why did students rarely use that
technique?

It is possible that Crossout and the method used by the second
instructor require more e�ort to sketch than Line or Chunk. Stu-
dents may not view the extra e�ort of striking out values as being
worth it, even if it does save cognition later. Even in the e�ort is
similar, students may value sketches that be�er re�ect code syntax.

6.6 Students with prior experience trace
di�erently than �rst-time coders

Participants in this study were taking an introductory computer
science class. However, a demographics survey revealed that 32.6%
of participants had prior programming experience. When we cat-
egorized students based on programming experience, we found a
signi�cant di�erence in the distribution of tracing techniques used
on multiple choice question 4. Students who had prior program-
ming experience used Line much more than �rst time coders (see
Figure 9). Experienced coders still used Chunk the most. Among
the four tracing methods, there was a statistically signi�cant di�er-
ence in tracing technique use between experienced and new coders
(p <0.01 on Fisher’s exact test).

Similarly, inexperienced coders used Chunk the most, but, unlike
experienced coders, they use other coding types less. Instructor 1
stated in her interview that she felt Chunk was more appropriate
for students new to programming, while Line was a be�er �t for
students more comfortable with programming. �is association
seems to be re�ected in our data.

Experienced coders used Incomplete much less than �rst time
coders; however, experienced coders were more likely to use no
tracing method at all. However, the di�erence was not statistically
signi�cant (p = 0.11 on Fisher’s exact test).

Figure 9: Tracing types used by �rst time coders and experi-
enced coders

7 CONCLUSION
Our results replicate the LWG’s major �ndings on sketching, extend
the LWG analysis to new problem types, and expand the taxonomy
of sketches. We re-a�rm that tracing is a successful sketch type
for use on code reading problems, while not sketching at all has a
low success rate. When tracing, completeness of tracing is more
predictive of correctness than tracing strategy. Details of tracing
sketches do not seem to make much di�erence.

Sketching is not as frequently used or as successful on code �xing,
code ordering, and code writing problems. Sketches like tracing
could certainly be used on these problems, such as for testing.
Students may not associate sketching with these problem types as
much as they do with code prediction. Alternatively, students may
have used problem-solving strategies that are not well-represented
in sketches, such as pa�ern-matching with known code pa�erns.

Our results are consistent with a view of sketching as a technique
to distribute cognition and manage cognitive load. When students
o�oad more cognition, as with complete trace sketches, they are
more successful. However, such well-ordered sketches may only
be possible with strong understanding of the notional machine.
Students who do not sketch may lack fundamental knowledge of the
notional machine, and are unable to use any sketching technique.

Besides assisting with problem-solving, sketching presents an
opportunity for instructor observation and peer interaction. Sketch-
ing is visible and can be completed in a group se�ing. New K-12
computing teachers cite the lack of materials and techniques to aid
them in the classroom as a major di�culty [7, 30]. Sketching re-
search can lead to the development of engaging, active pedagogical
techniques.

�e success of sketching on certain problems, particularly trac-
ing sketches for code prediction problems, supports the idea that all
students should be taught a tracing sketch technique. Our results
suggest that students’ choice of technique is not a straightforward
adaptation of their instructor’s sketching. If we know more about
why students choose a particular technique, we might be able to de-
termine techniques students are most likely to adopt and complete.

ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers, who provided detailed
feedback and suggestions that improved this paper.

Session 7: External Representation for Understanding & Learning Trajectory ICER’17, August 18–20, 2017, Tacoma, WA, USA

171

REFERENCES
[1] ACM/IEEE-CS Joint Task Force on Computing Curricula. 2013. Computer Science

Curricula 2013. Technical Report. ACM Press and IEEE Computer Society Press.
DOI:h�p://dx.doi.org/10.1145/2534860

[2] Paul Chandler and John Sweller. 1991. Cognitive load theory and the format of
instruction. Cognition and instruction 8, 4 (1991), 293–332.

[3] Michelene TH Chi, Stephanie A Siler, Heisawn Jeong, Takashi Yamauchi, and
Robert G Hausmann. 2001. Learning from human tutoring. Cognitive Science 25,
4 (2001), 471–533.

[4] Michelene T. H. Chi, Paul J. Feltovich, and Robert Glaser. 1981. Categorization
and Representation of Physics Problems by Experts and Novices. Cognitive
Science 5, 2 (1981), 121–152. DOI:h�p://dx.doi.org/10.1207/s15516709cog0502 2

[5] Benedict Du Boulay. 1986. Some Di�culties of Learning to Program. Journal
of Educational Computing Research 2, 1 (1986), 57–73. DOI:h�p://dx.doi.org/10.
2190/3LFX-9RRF-67T8-UVK9

[6] Robert Ferguson and George M. Bodner. 2008. Making sense of the arrow-pushing
formalism among chemistry majors enrolled in organic chemistry. Chem. Educ.
Res. Pract. 9 (2008), 102–113. Issue 2. DOI:h�p://dx.doi.org/10.1039/B806225K

[7] Mark Guzdial, Barbara Ericson, Tom McKlin, and Shelly Engelman. 2014. Georgia
Computes! An Intervention in a US State, with Formal and Informal Education
in a Policy Context. 14, 2 (2014).

[8] Ma�hew Hertz and Maria Jump. 2013. Trace-Based Teaching in Early Program-
ming Courses. Proceedings of the 44th ACM Technical Symposium on Computer Sci-
ence Education (2013), 561–566. DOI:h�p://dx.doi.org/10.1145/2445196.2445364

[9] Mark A. Holliday and David Luginbuhl. 2004. CS1 assessment using memory
diagrams. ACM SIGCSE Bulletin 36, 1 (2004), 200. DOI:h�p://dx.doi.org/10.1145/
1028174.971373

[10] Edwin Hutchins. 1995. How a cockpit remembers its speeds. Cognitive science
19, 3 (1995), 265–288.

[11] Petri Ihantola and Ville Karavirta. 2011. Two-dimensional parson�s puzzles:
�e concept, tools, and �rst observations. Journal of Information Technology
Education 10 (2011), 2011.

[12] Magdalene Lampert. 1992. Teaching and learning long division for understand-
ing in school. In Analysis of Arithmetic for Mathematics Teaching, Rosemary
A. Ha�rup Gaea Leinhardt, Ralph Putnam (Ed.). Psychology Press, Chapter 4,
221–282.

[13] Raymond Lister, Tony Clear, Dennis J Bouvier, Paul Carter, Anna Eckerdal, Jana
Jacková, Mike Lopez, Robert McCartney, Phil Robbins, O�o Seppälä, and others.
2010. Naturally occurring data as research instrument: analyzing examination
responses to study the novice programmer. ACM SIGCSE Bulletin 41, 4 (2010),
156–173.

[14] Raymond Lister, O�o Seppälä, Beth Simon, Lynda �omas, Elizabeth S. Adams,
Sue Fitzgerald, William Fone, John Hamer, Morten Lindholm, Robert McCartney,
Jan Erik Moström, and Kate Sanders. 2004. A multi-national study of reading and
tracing skills in novice programmers. In ACM SIGCSE Bulletin, Vol. 36. 119–150.
DOI:h�p://dx.doi.org/10.1145/1041624.1041673

[15] Linxiao Ma. 2007. Investigating and improving novice programmers’ mental models
of programming concepts. Ph.D. Dissertation. University of Strathclyde.

[16] Robert McCartney, Jan Erik Moström, Kate Sanders, and O�o Seppälä. 2004.
�estions, Annotations, and Institutions: observations from a study of novice
programmers. In the Fourth Finnish/Baltic Sea Conference on Computer Science
Education, October 1–3, 2004 in Koli, Finland. Helsinki University of Technology,
Department of Computer Science and Engineering, Laboratory of Information
Processing Science, FINLAND, 11–19.

[17] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,
Yifat Ben-David Kolikant, Cary Laxer, Lynda �omas, Ian U�ing, and Tadeusz

Wilusz. 2001. A Multi-national, Multi-institutional Study of Assessment of
Programming Skills of First-year CS Students. SIGCSE Bull. 33, 4 (Dec. 2001),
125–180. DOI:h�p://dx.doi.org/10.1145/572139.572181

[18] Briana B. Morrison, Lauren E. Margulieux, and Mark Guzdial. 2015. Subgoals,
Context, and Worked Examples in Learning Computing Problem Solving. In
Proceedings of the Eleventh Annual International Conference on International
Computing Education Research (ICER ’15). ACM, New York, NY, USA, 21–29. DOI:
h�p://dx.doi.org/10.1145/2787622.2787733

[19] Dale Parsons and Patricia Haden. 2006. Parson’s Programming Puzzles: A Fun
and E�ective Learning Tool for First Programming Courses. In Proceedings of
the 8th Australasian Conference on Computing Education - Volume 52 (ACE ’06).
Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 157–163.
h�p://dl.acm.org/citation.cfm?id=1151869.1151890

[20] Roy D Pea. 1993. Practices of distributed intelligence and designs for education.
Distributed cognitions: Psychological and educational considerations 11 (1993).

[21] Robert S. Rist. 1989. Schema Creation in Programming. Cognitive Science 13, 3
(1989), 389–414. DOI:h�p://dx.doi.org/10.1207/s15516709cog1303 3

[22] Juha Sorva. 2013. Notional Machines and Introductory Programming Education.
Trans. Comput. Educ. 13, 2, Article 8 (July 2013), 31 pages. DOI:h�p://dx.doi.org/
10.1145/2483710.2483713

[23] John Sweller, Jeroen JG Van Merrienboer, and Fred GWC Paas. 1998. Cognitive
architecture and instructional design. Educational psychology review 10, 3 (1998),
251–296.

[24] Allison Ellio� Tew and Mark Guzdial. 2010. Developing a Validated Assessment of
Fundamental CS1 Concepts. In Proceedings of the 41st ACM Technical Symposium
on Computer Science Education (SIGCSE ’10). ACM, New York, NY, USA, 97–101.
DOI:h�p://dx.doi.org/10.1145/1734263.1734297

[25] Lynda �omas, Mark Ratcli�e, and Benjy �omasson. 2004. Sca�olding with
Object Diagrams in First Year Programming Classes: Some Unexpected Results.
In Proceedings of the 35th SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’04). ACM, New York, NY, USA, 250–254. DOI:h�p://dx.doi.
org/10.1145/971300.971390

[26] Juhani E. Tuovinen. 2000. Optimising Student Cognitive Load in Computer
Education. In Proceedings of the Australasian Conference on Computing Education
(ACSE ’00). ACM, New York, NY, USA, 235–241. DOI:h�p://dx.doi.org/10.1145/
359369.359405

[27] Ian U�ing, Allison Ellio� Tew, Mike McCracken, Lynda �omas, Dennis Bouvier,
Roger Frye, James Paterson, Michael Caspersen, Yifat Ben-David Kolikant, Juha
Sorva, and Tadeusz Wilusz. 2013. A Fresh Look at Novice Programmers’ Perfor-
mance and �eir Teachers’ Expectations. In Proceedings of the ITiCSE Working
Group Reports Conference on Innovation and Technology in Computer Science
Education - Working Group Reports (ITiCSE -WGR ’13). ACM, New York, NY, USA,
15–32. DOI:h�p://dx.doi.org/10.1145/2543882.2543884

[28] Vesa Vainio and Jorma Sajaniemi. 2007. Factors in Novice Programmers’ Poor
Tracing Skills. SIGCSE Bull. 39, 3 (June 2007), 236–240. DOI:h�p://dx.doi.org/10.
1145/1269900.1268853

[29] Jacqueline Whalley, Christine Prasad, and P. K. Ajith Kumar. 2007. Decoding
Doodles: Novice Programmers and �eir Annotations. In Proceedings of the
Ninth Australasian Conference on Computing Education - Volume 66 (ACE ’07).
Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 171–178.
h�p://dl.acm.org/citation.cfm?id=1273672.1273693

[30] Aman Yadav, Sarah Gre�er, Susanne Hambrusch, and Phil Sands. 2017.
Expanding computer science education in schools: understanding
teacher experiences and challenges. Computer Science Education 26, 4
(2017), 235–254. DOI:h�p://dx.doi.org/10.1080/08993408.2016.1257418
arXiv:h�p://dx.doi.org/10.1080/08993408.2016.1257418

Session 7: External Representation for Understanding & Learning Trajectory ICER’17, August 18–20, 2017, Tacoma, WA, USA

172

http://dx.doi.org/10.1145/2534860
http://dx.doi.org/10.1207/s15516709cog0502_2
http://dx.doi.org/10.2190/3LFX-9RRF-67T8-UVK9
http://dx.doi.org/10.2190/3LFX-9RRF-67T8-UVK9
http://dx.doi.org/10.1039/B806225K
http://dx.doi.org/10.1145/2445196.2445364
http://dx.doi.org/10.1145/1028174.971373
http://dx.doi.org/10.1145/1028174.971373
http://dx.doi.org/10.1145/1041624.1041673
http://dx.doi.org/10.1145/572139.572181
http://dx.doi.org/10.1145/2787622.2787733
http://dl.acm.org/citation.cfm?id=1151869.1151890
http://dx.doi.org/10.1207/s15516709cog1303_3
http://dx.doi.org/10.1145/2483710.2483713
http://dx.doi.org/10.1145/2483710.2483713
http://dx.doi.org/10.1145/1734263.1734297
http://dx.doi.org/10.1145/971300.971390
http://dx.doi.org/10.1145/971300.971390
http://dx.doi.org/10.1145/359369.359405
http://dx.doi.org/10.1145/359369.359405
http://dx.doi.org/10.1145/2543882.2543884
http://dx.doi.org/10.1145/1269900.1268853
http://dx.doi.org/10.1145/1269900.1268853
http://dl.acm.org/citation.cfm?id=1273672.1273693
http://dx.doi.org/10.1080/08993408.2016.1257418

	Abstract
	1 Introduction
	2 Background
	2.1 Sketching in computing education research
	2.2 Tracing and the notional machine
	2.3 Sketching as distributed cognition

	3 Experimental Design
	4 Replication of the Leeds working group analysis
	4.1 Not all sketching is created equal
	4.2 The sketch type ``Trace" is the most successful
	4.3 No sketching at all is associated with lower success
	4.4 Differences from LWG results
	4.5 Sketching to avoid split attention effect

	5 Profiling Sketch Use
	5.1 Some prediction problems trigger sketching more than others
	5.2 Sketching leads to better predictions
	5.3 Sketching on fix, order, and write code problems
	5.4 Sketchers take more time

	6 Observing new sketch types
	6.1 Creating finer distinctions in the LWG sketching taxonomy
	6.2 Sketches are different in how they mirror the notional machine
	6.3 These tracing sketches were equally successful
	6.4 Incomplete tracers and non-tracers were less successful
	6.5 Instructors, TAs, and students trace differently
	6.6 Students with prior experience trace differently than first-time coders

	7 Conclusion
	Acknowledgments
	References

