The goal of the project is to create robust sensing system that fuses a comprehensive suite of multimodal sensing modalities for automated modeling of individual differences and job performance. Twin sub-goals include: 1) validating that our proposed sensing streams fused together via machine learning coupled with ground truth reliably predict both individual differences, and in turn, job performances; 2) successfully creting and demonstrating generalizable models that reliably predict individual differences and job performance through only our proposed sensor data streams. In particular, the sensor data streams include bluetooth beacon data, phone agent, garmin fitness wearable, and social media data.
The SocWeB Lab's mission is to develop novel computational techniques, and technologies powered by these techniques, to responsibly and ethically employ social media in quantifying, understanding, and improving our mental health and well-being.